3,864 research outputs found

    Geant4 based simulation of the Water Cherenkov Detectors of the LAGO Project

    Get PDF
    To characterize the signals registered by the different types of water Cherenkov detectors (WCD) used by the Latin American Giant Observatory (LAGO) Project, it is necessary to develop detailed simulations of the detector response to the flux of secondary particles at the detector level. These particles are originated during the interaction of cosmic rays with the atmosphere. In this context, the LAGO project aims to study the high energy component of gamma rays bursts (GRBs) and space weather phenomena by looking for the solar modulation of galactic cosmic rays (GCRs). Focus in this, a complete and complex chain of simulations is being developed that account for geomagnetic effects, atmospheric reaction and detector response at each LAGO site. In this work we shown the first steps of a GEANT4 based simulation for the LAGO WCD, with emphasis on the induced effects of the detector internal diffusive coating.Comment: 5 pages, 4 figures, Proceedings X SILAFAE Medellin-2014. To appear in Nuclear Physics B - Proceedings Supplement

    The Herschel view of GAS in Protoplanetary Systems (GASPS): First comparisons with a large grid of models

    Get PDF
    The Herschel GASPS key program is a survey of the gas phase of protoplanetary discs, targeting 240 objects which cover a large range of ages, spectral types, and disc properties. To interpret this large quantity of data and initiate self-consistent analyses of the gas and dust properties of protoplanetary discs, we have combined the capabilities of the radiative transfer code MCFOST with the gas thermal balance and chemistry code ProDiMo to compute a grid of ≈300  000 disc models (DENT). We present a comparison of the first Herschel/GASPS line and continuum data with the predictions from the DENT grid of models. Our objective is to test some of the main trends already identified in the DENT grid, as well as to define better empirical diagnostics to estimate the total gas mass of protoplanetary discs. Photospheric UV radiation appears to be the dominant gas-heating mechanism for Herbig stars, whereas UV excess and/or X-rays emission dominates for T Tauri stars. The DENT grid reveals the complexity in the analysis of far-IR lines and the difficulty to invert these observations into physical quantities. The combination of Herschel line observations with continuum data and/or with rotational lines in the (sub-)millimetre regime, in particular CO lines, is required for a detailed characterisation of the physical and chemical properties of circumstellar discs

    DoS protection for a Pragmatic Multiservice Network Based on Programmable Networks

    Get PDF
    Proceedings of First International IFIP TC6 Conference, AN 2006, Paris, France, September 27-29, 2006.We propose a scenario of a multiservice network, based on pragmatic ideas of programmable networks. Active routers are capable of processing both active and legacy packets. This scenario is vulnerable to a Denial of Service attack, which consists in inserting false legacy packets into active routers. We propose a mechanism for detecting the injection of fake legacy packets into active routers. This mechanism consists in exchanging accounting information on the traffic between neighboring active routers. The exchange of accounting information must be carried out in a secure way using secure active packets. The proposed mechanism is sensitive to the loss of packets. To deal with this problem some improvements in the mechanism has been proposed. An important issue is the procedure for discharging packets when an attack has been detected. We propose an easy and efficient mechanism that would be improved in future work.Publicad

    Equivalence between the real time Feynman histories and the quantum shutter approaches for the "passage time" in tunneling

    Get PDF
    We show the equivalence of the functions Gp(t)G_{\rm p}(t) and Ψ(d,t)2|\Psi(d,t)|^2 for the ``passage time'' in tunneling. The former, obtained within the framework of the real time Feynman histories approach to the tunneling time problem, using the Gell-Mann and Hartle's decoherence functional, and the latter involving an exact analytical solution to the time-dependent Schr\"{o}dinger equation for cutoff initial waves

    Transient tunneling effects of resonance doublets in triple barrier systems

    Get PDF
    Transient tunneling effects in triple barrier systems are investigated by considering a time-dependent solution to the Schr\"{o}dinger equation with a cutoff wave initial condition. We derive a two-level formula for incidence energies EE near the first resonance doublet of the system. Based on that expression we find that the probability density along the internal region of the potential, is governed by three oscillation frequencies: one of them refers to the well known Bohr frequency, given in terms of the first and second resonance energies of the doublet, and the two others, represent a coupling with the incidence energy EE. This allows to manipulate the above frequencies to control the tunneling transient behavior of the probability density in the short-time regim

    Delay time and tunneling transient phenomena

    Get PDF
    Analytic solutions to the time-dependent Schr\"odinger equation for cutoff wave initial conditions are used to investigate the time evolution of the transmitted probability density for tunneling. For a broad range of values of the potential barrier opacity α\alpha, we find that the probability density exhibits two evolving structures. One refers to the propagation of a {\it forerunner} related to a {\it time domain resonance} [Phys. Rev. A {\bf 64}, 0121907 (2001)], while the other consists of a semiclassical propagating wavefront. We find a regime where the {\it forerunners} are absent, corresponding to positive {\it time delays}, and show that this regime is characterized by opacities α<αc\alpha < \alpha_c. The critical opacity αc\alpha_c is derived from the analytical expression for the {\it delay time}, that reflects a link between transient effects in tunneling and the {\it delay time}Comment: To be published in Physical Review

    Time evolution of decay of two identical quantum particles

    Full text link
    An analytical solution for the time evolution of decay of two identical non interacting quantum particles seated initially within a potential of finite range is derived using the formalism of resonant states. It is shown that the wave function, and hence also the survival and nonescape probabilities, for factorized symmetric and entangled symmetric/antisymmetric initial states evolve in a distinctive form along the exponentially decaying and nonexponential regimes. Our findings show the influence of the Pauli exclusion principle on decay. We exemplify our results by solving exactly the s-wave delta shell potential model.Comment: 14 pages, 3 figures, added references and discussio

    Full time nonexponential decay in double-barrier quantum structures

    Get PDF
    We examine an analytical expression for the survival probability for the time evolution of quantum decay to discuss a regime where quantum decay is nonexponential at all times. We find that the interference between the exponential and nonexponential terms of the survival amplitude modifies the usual exponential decay regime in systems where the ratio of the resonance energy to the decay width, is less than 0.3. We suggest that such regime could be observed in semiconductor double-barrier resonant quantum structures with appropriate parameters.Comment: 6 pages, 5 figure

    Estrategias de organizaciones gubernamentales y de la iniciativa privada para crear una infraestructura educativa respecto a las nuevas tecnologías de la comunicación y la información en México

    Get PDF
    1 archivo PDF (12 páginas). magyedtaRESUMEN: Actualmente vivimos en una sociedad en la cual el conocimiento y la tecnología son el principal capital del desarrollo y el crecimiento económico- social mundial. Esta nueva era está enmarcada en un mundo globalizado, en el que el conocimiento desempeña un papel trascendente, junto con las nuevas tecnologías de la comunicación y la información (NTCI). Por lo anterior, en este documento se analizan algunos de los programas gubernamentales y de organizaciones privadas de nuestro país enfocados a crear las condiciones y la infraestructura necesaria para incrementar e impulsar el uso de las NTCI, que permitan que las nuevas generaciones de trabajadores y profesionistas del país enfrenten competitivamente el actual mundo global, en el que la presencia y el uso de las NTCI son trascendentes para el éxito individual, organizacional y el desarrollo de las naciones. Abstract Actually, we live in a knowledge and technological society which they are the main socioeconomical growth motor worldwide. This new age is a global world, where the main actor is the knowledge and the new communication and information technologies (NTCI Spanish initials). That’s why he analyses some of the public and private programs in Mexico, programs created for giving the conditional factors and the needed infrastructure in order to increase and promote NTCI use, to allow competitive confronting and individual-organizational-country success and growth, among new workers-professionals generations. PALABRAS CLAVE: Infraestructura, mundo global. KEYWORDS: Infrastructure, global world

    Systematic challenges for future gravitational wave measurements of precessing binary black holes

    Get PDF
    The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have modestly large spins (a0.4a\gtrsim 0.4) and modest mass ratios (q2q\gtrsim 2). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.Comment: 12 pages, 9 figure
    corecore